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Introduction

Characteristics
Formation
Movement

Role in initiating convection
« Large-scale along-dryline variability
« Small-scale along-dryline variability




Characteristics

» Dewpoint difference
— Change of 3°C at rate of .5°C per hour up to
18°C
* Wind shift

— Sharp wind shift on west with weak winds to
the east

* The zone between two air masses or
boundary layers
— Depth of boundary layers oscillate




Characteristics

» Doppler velocity used to study

— Low level convergence and upper level
divergence

— Hot air from west overflowed to east

— Secondary circulation with descent to the east
 Driven by vertical potential temperature gradient

— Westward tilt with height of vertical vorticity




Formation

Negatively tilted longwave trough at 500
mb over western U.S.

Weak jet at 500 mb across southern CO

850 mb southerly winds over Texas from
Gulf

Appearance of strong inversion at 12002

Terrain slope, heat fluxes, and soll
moisture affect formation and movement




Movement

Warm dry air on west side overruns and
forms cap

Dry air creates higher PBL

Moves by mixing and lowering dewpoint
Can retrograde at night




Movement

* Move smoothly in morning and jump in
afternoon
» Bulges can form

» Evidence of other boundaries forming near
dryline with similar characteristics

— Double dryline possible




Convective Initiation

« Large-scale along-dryline variability
— Soil Moisture
— Pressure Gradient Force
— Cloud Streets

« Small-scale along-dryline variability
— Horizontal Convective Rolls (HCRs)
— Misocyclones

« Air Parcels




Horizontal Convective Rolls
(HCRs)

Tubes of horizontal vorticity

Generated by convective instability and wind
shear

Aligned with boundary layer shear vector
Cloud streets, reflectivity fine lines
Near-Surface Moisture Convergence (modeled)

Enhanced surface convergence — enhanced
upward motion!




HCR Conceptual Model

From Xue and Martin (2006)
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HCRs on Radar
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HCRs on Radar (cont.)
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HCRs on Satellite (Cloud Streets)
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A Closer Look




Near-Surface Moisture
Convergence
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Misocyclones

Vertical vorticity tubes < 4km in diameter

Relationship near HCRs along boundary
— Aid in bending boundary to wavelike shape

Control where updrafts can exist due to
downward-directed pressure gradient at
core

Can spawn non-supercell tornadoes when
established updraft core/storm collocates
with misocyclone




Misocyclones
From Murphey et al. (2006)
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FiG. 21. Schematic model showing the relationship between misocyclones, updrafts, and the horizontal distribution of moisture thal
lead to the initiation of convection, and nonsupercell tornadogenesis.




Air Parcels

The “So what?” of it all

« Even in the presence of
enhanced convergence
and vertical motion,
convection can still be
rejected

Parcels need to be forced
to their LFC

hlcl and hlfc

Large-scale subsidence at
a ridge

Capping

CIN, and too much of it
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